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Introduction
Since we now have excellent higher order codes like MARYLIE
and COSY-∞, why do we need to know more about fringe
fields?

• Keeps us from wasting time trying to do impossible things.

• Deeper understanding results in more efficiency in
designing transport systems.

• Finding the real sources of end effects allows development
of simple formulas for inclusion in first order codes to
determine whether or not aberrations will be a problem.

We can understand beam optics by using F = ma, or more
deeply by using Hamiltonians. Knowing the details of the forces
gives us a secure feeling, but in the end gives us too much
detail. Why too much? Because beam particles are nothing
more than integrators of a certain type. Concentrating on the
bare forces tricks us into thinking the motion depends upon all
the details of those forces. It does not.

I want to show some simple results from using a Hamiltonian
formalism to understand beam optics. In the process, I hope to
kill a few long-standing myths such as

• Occupancy: “don’t allow beam to fill more than x% of
aperture”

• Aspect Ratio: “don’t allow elements to be shorter than x
times the aperture”.
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Illustrative Example: The Solenoid

~F = q~v × ~B, so with ~B in the z-direction, Fx = qvyB,
Fy = −qvxB. We all know the equations of motion are easily
integrated to give the following (incorrect, non-symplectic)
transfer matrix for the solenoid:xf

x′f
yf

y′f

 =

1 ρ sin θ 0 ρ(1− cos θ)
0 cos θ 0 sin θ
0 −ρ(1− cos θ) 1 ρ sin θ
0 − sin θ 0 cos θ


xi

x′i
yi

y′i


(ρ ≡ (Bρ)/B, and θ = L/ρ where L is the length.)

This is incorrect because we haven’t included the end effects.

At the ends, the magnetic field has a radial component which
can be considered as arising from ∇ · ~B = 0.

Br = −
r

2

dB

dz
≡ −

r

2
B′
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The Solenoid –cont’d

This yields an additional transverse force Fx = qv0B′y/2,
Fy = −qv0B′x/2. This seems problematic to integrate because
x, y and B′ change simultaneously in the fringe field region. But
in the hard-edge case, it is easily done. For entry,

∆x′ =
y

2ρ
, ∆y′ = −

x

2ρ

with opposite signs for exit. When applied to the matrix above,
the result is a matrix (recall θ = L/ρ)

cos2 θ
2

ρ sin θ 1
2

sin θ 2ρ sin2 θ
2

−1
4ρ

sin θ cos2 θ
2

−1
2ρ

sin2 θ
2

1
2

sin θ
−1
2

sin θ −2ρ sin2 θ
2

cos2 θ
2

ρ sin θ
1
2ρ

sin2 θ
2
−1

2
sin θ −1

4ρ
sin θ cos2 θ

2


which can be decomposed into a rotation by angle θ

2
and a

decoupled, stigmatic focusing element described by
cos θ

2
2ρ sin θ

2
0 0

− 1
2ρ

sin θ
2

cos θ
2

0 0

0 0 cos θ
2

2ρ sin θ
2

0 0 − 1
2ρ

sin θ
2

cos θ
2


With this derivation, the student would be forgiven for the
incorrect conclusion that the transfer matrix adopts such a
simple form only in the hard-edged case.
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Solenoid: Hamiltonian Derivation

The canonical momentum ~P is not the ‘kinetic’ momentum ~p,
but is instead ~p+ q ~A, where ~A is the vector potential. So the

Hamiltonian is H = c

√
m2c2 + |~P − q ~A|2. In the usual way,

we note H is independent of t, and so is constant H = E,
switch to z as independent variable by solving for Pz, and write
the new Hamiltonian as H = −Pz.

For the solenoid, by symmetry, ~A has only a component in the
azimuthal direction. To first order, Aθ = rB(z)/2. So to first
order (second degree in H),

H =
1

2

[(
Px +

y

2ρ

)2

+

(
Py −

x

2ρ

)2
]

(We have normalized by dividing by p0 = q(Bρ) =
√
E2/c2 −m2c2, and

B appears in 1/ρ = qB(z)/p0 = B(z)/(Bρ).)

We note that only B appears. Though we tend to think of B′

as the source of all our end effects, it doesn’t even appear.
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Solenoid: Hamiltonian Derivation – cont’d

The equations of motion are

x′ = ∂H
∂Px

= Px +
y

2ρ

P ′x = −∂H
∂x

=
1

2ρ

(
Py −

x

2ρ

)
y′ = ∂H

∂Py
= Py −

x

2ρ

P ′y = −∂H
∂y

= −
1

2ρ

(
Px +

y

2ρ

)
These are easily solved for the hard-edge case, and without

any additional physics yield the matrix we found previously. We
had thought that matrix depended upon a composition of
entrance field, body field, exit fringe field.

For tidiness, we can also write the equations of motion as a
matrix: x′ = Fx where x = (x, Px, y, Py)T , and

F =


0 1 1

2ρ
0

−
(

1
2ρ

)2
0 0 1

2ρ

− 1
2ρ

0 0 1

0 − 1
2ρ
−
(

1
2ρ

)2
0


F is simply the transfer matrix of an infinitesimal distance dz,

with the identity matrix subtracted, and divided by dz.
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Solenoid: Hamiltonian Derivation – cont’d

Now do the following exercise. Take the hard-edged solenoid
transfer matrix derived previously, in the limit of infinitesimal
length dz, 

1 dz dz
2ρ

0
−dz
4ρ2 1 0 dz

2ρ
−dz
2ρ

0 1 dz

0 −dz
2ρ

−dz
4ρ2 1


subtract I, divide by dz. Remarkably, this is identical to the
infinitesimal transfer matrix above. There simply are no ‘end
effects’.

Closer investigation shows that what we thought of as the end
effects are replaced in this picture by transformations out of and
back into canonical coordinates px = Px + y/(2ρ),
py = Py − x/(2ρ).

Can this trick apply to end effects of other elements as well?
Surprisingly, the answer is YES.
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Quadrupole End Effects: Magnetic

In quadrupoles, there are no end effects in first order: they only
appear in third order. The Hamiltonian is as before, but the
vector potential is

Ax = −
k′

4
xy2, Ay =

k′

4
x2y

Az = −
k

2
(x2 − y2) +

k′′

48
(x4 − y4),

Note that this is for a gauge which gives the simplest ~A while still satisfying
∇×∇× ~A = 0; it is not the Coulomb gauge.

The Hamiltonian can be written:

H =
1

2

[
k (x2 − y2)−

k′′

24
(x4 − y4) + P 2

x + P 2
y

]
+

+
k′xy

4
(yPx − xPy) +

1

8
(P 2

x + P 2
y )2.

Now it looks like we really do have end effects which depend on
the details of the fringe field, since both first and second
derivatives of k(z) appear, even though we are already using
canonical momenta.
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Magnetic Quad – cont’d

Surprisingly, it turns out to be possible to find a canonical
transformation which eliminates these derivatives of k(z). In
our case, we wish to retain terms to 4th degree in the
Hamiltonian (3rd order on force). The transformation
(x, Px, y, Py)→ (X,PX, Y, PY ) with generating function

G(x, PX, y, PY ) = xPX + yPY +
k′

48
(x4 − y4) +

−
k

12

[
(x3 + 3xy2)PX − (3x2y + y3)PY

]
accomplishes exactly this. To 3rd order it yields transformation

x = X +
k

12
(X3 + 3XY 2)

Px = PX −
k

4

[
(X2 + Y 2)PX − 2XY PY

]
+

k′

12
X3,

The y-transformation is obtained by replacing x, Px, X, PX with
y, Py, Y, PY and k with −k. Note that outside the quadrupole,
the transformed coordinates are the same as the original ones.

The transformed Hamiltonian is

H∗ =
k

2
(X2 − Y 2) +

1

2
(P 2

X + P 2
Y ) +

+
1

8
(P 2

X + P 2
Y )2 −

k

4
(X2 + Y 2)(P 2

X − P 2
Y )

+
k2

12
(X4 + Y 4) +

k2

2
X2Y 2.
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Magnetic Quad – cont’d

We can identify the terms: the first two are the usual linear
ones; the third term is not related to the quadrupole field; the
4th term is also small and arises because a particle going
through the quadrupole at an angle is inside the quad for slightly
longer than one which remains on axis.

The dominating higher order terms are the last two terms in the
Hamiltonian. Since there are no derivatives of k, we can directly
write down the aberrations in the thin-lens limit:

∆Px = −
∫
∂H∗

∂y
ds ≈

−1

f2L

(
1

3
x3 + xy2

)
,

with a similar expression for ∆Py. L and f are the quadrupole’s
effective length and focal length. The fractional focal error is
found by dividing by the linear part ∆0Px = −x/f :

∆fx

f
=

1

fL

(
1

3
x2 + y2

)
for x, and similarly for y.

It is important to realize that since there are no derivatives of k
in the Hamiltonian, there is no essential difference between the
thin-lens limit and a real quadrupole. A real quadrupole can be
thought of as simply a string of many thin quadrupoles with
strengths varying as k(z). This is just as we found for first-order
end effects in the solenoid.

Does the transforming away of end effects depend on some
fluky property of magnetic quads? Well, let’s try electric quads.
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Electrostatic Quads
Here the end effects show up quite differently in the Hamiltonian:

H =
1

2

[
V (x2 − y2)−

V ′′

12
(x4 − y4) + p2

x + p2
y

]
+

1

8

[
V (x2 − y2) + p2

x + p2
y

]2
.

This follows from using Laplace’s equation to expand the quad potential
V (z)(x2 − y2) to 4th order, thereby bringing in the dependence on V ′′.

We try the generating function:

G(x, PX , y, PY ) = xPX + yPY +
V ′

24
(x4 − y4) +

−
V

6
(x3PX − y3PY ).

which gives transformation

x = X +
V

6
X3

px = PX −
V

2
X2PX +

V ′

6
X3.

The new Hamiltonian is

H∗ =
V

2
(X2 − Y 2) +

1

2
(P 2

X + P 2
Y ) +

+
1

8
(P 2

X + P 2
Y )2 −

V

4
(X2 + Y 2)(P 2

X − P
2
Y )

+
7V 2

24
(X4 + Y 4)−

V 2

4
X2Y 2.

This is the same as for the magnetic case except for the coefficients of the
last 2 terms. The main aberration is given by

∆fx

f
=

1

fL

(
7

6
x2 −

1

2
y2
)

for x, and similarly for y.
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Discussion – Quads
The new equations of motion really are correct to third order (I’ve
checked against COSY-∞). But they are also way more conve-
nient computationally. Only k(z) needs to be known. One can
use survey data for a real quad, without the complication of cal-
culating numerical derivatives.

Moreover, for most purposes, it is sufficient to use the simple first
order transfer matrix, augmented by third order kicks applied at
the entrance and exit. As with the solenoid, these kicks are sim-
ply those given by the canonical transformation. This procedure
is much simpler than calculating ‘fringe field integrals’

Lastly, we can see that the third order aberrations do not de-
pend upon aperture, aperture occupancy, length-to-aperture as-
pect ratio, or any of these kinds of considerations. They only de-
pend upon strength and length. In any given application with f
imposed, these aberrations are reduced by increasing the quad’s
effective length. There is no other choice.
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Dipoles: Sector Magnet

Now let’s try a magnetic dipole. A complicating feature here is
that we have to use a curvilinear coordinate system. For emphasis
of this fact, for the independent variable, we replace the Cartesian z with s,
the distance along the reference trajectory. We are interested in the
lowest-order effects of the end fields. Unlike quads, where this
is third order, in dipoles the lowest order effect is second order
(third degree in H). The Hamiltonian is

H = −(1 + hx)

[
1 +

qAs

p0
−
(
Px −

qAx

p0

)2

−
(
Py −

qAy

p0

)2
]

where h = h(s) is the local curvature on the reference trajectory.

The vector potential is

(1 + hx)Ax = −
1

2
B′y2

Ay = 0

(1 + hx)As = −
(

1 +
hx

2

)
Bx

As anticipated, insertion into H yields a condition qB/p0 = h to
make first degree terms disappear, so that x = y = 0 is indeed
the reference trajectory. The final H is

H =
1

2

[
h2 x2 + P 2

x + P 2
y + hx(P 2

x + P 2
y ) + h′ y2Px

]
Note in particular the appearance of the problematic derivative
of h.
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Magnetic Dipole – cont’d

This is in fact the easiest example. The generating function to
get rid of h′ almost suggests itself:

G(x, PX, y, PY ) = xPX + yPY −
h

2
y2 PX

The transformation is

x = X + hY 2/2
y = Y

Px = PX
Py = PY − h yPX,

and the transformed H is

H∗ =
h2

2
X2 +

1

2
(P 2

X + P 2
Y ) +

h

2
X(P 2

X + P 2
Y )

−hY PXPY +
h3

2
XY 2

Again, the end-fields have been magically transformed away:
the last 2 terms have taken the place of the term containing h′.
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Magnetic Dipole – cont’d

Let us try to get a deeper understanding of this transformation.

The important last term in the new Hamiltonian gives for the
thin-lens approximation,

∆py = −
∫
∂H∗

∂y
ds ≈ −h3Lxy.

Now look at the old Hamiltonian:

∆py = −
∫
∂H
∂y
ds ≈ −y

∫
h′Px ds = y

∫
hP ′x ds,

where we have integrated by parts. We use the first-order
expression P ′x = −h2x, to get again ∆py ≈ −h3Lxy.

The symplectic counterpart

∆px = −
∫
∂H∗

∂x
ds ≈ −h3Ly2/2.

is not as easily found from the original H. We note that

∆px = −
∫
∂H
∂x
ds ≈ −

∫
h2x ds,

which is the first order effect, but x is shifted because x′ = ∂H
∂Px

and this has an additional term h′y2/2, giving ∆x = hy2/2
(seem familiar?). Combined, we recover ∆px ≈ −h3Ly2/2.

This ‘traditional’ kind of approach works for quads as well.
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Electrostatic Bend with Field Index
(Use Mathematica...)
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Electrostatic Dipole – cont’d

Reminder: h = h(z)

H(X,PX, Y, PY ; z) =
P 2
X

2
+
P 2
Y

2

+

(
−
kh

2
+ h2

)
X2 +

kh

2
Y 2

+

(
4

3
h3 −

7

6
kh2 +

1

3
k2h

)
X3

+

(
1

2
kh2 − k2h

)
XY 2

+ h XP 2
Y

h = 1/ρ, let c ≡ k/h. Nonlinear part of P ′X = −∂H/∂X is
integrated through the bend length L = ρθ to give

∆px =
θ

ρ2

[(
−4 +

7

2
c− c2

)
x2 +

(
−

1

2
c+ c2

)
y2

]
∆py =

θ

ρ2

(
−c+ 2c2

)
xy
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Electrostatic Dipole – cont’d

We test in COSY-∞, using parameters such that

θ/ρ2 = 10−4.

Cylindrical bend c = 0:

∆px = −
4θ

ρ2
x2, and ∆py = 0

x p_x y p_y

-0.199665E-04-0.400046E-03 0.00000 0.00000 2000
0.00000 0.00000 -0.324334E-07 0.182194E-06 1010

0.288633E-08 0.911004E-07 0.00000 0.00000 0020

Spherical bend c = 1:

∆px =
θ

ρ2

(
−

3

2
x2 +

1

2
y2

)
, and ∆py =

θ

ρ2
xy

x p_x y p_y

-0.748504E-05-0.150067E-03 0.00000 0.00000 2000
0.00000 0.00000 -0.499447E-05 0.101086E-03 1010

0.250319E-05 0.505384E-04 0.00000 0.00000 0020
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Higher Order End Effects

Though the lowest-order end-fields can be transformed away
(i.e., do not depend upon aperture), this is not true of the next-
to-lowest order end fields. They do depend upon aperture [A.
Dragt]. This can be checked with COSY-∞. In terms of canoni-
cal transformations, it means that no transformation exists which
eliminates the derivatives of the strength function. Our results
can be summarized in the table

Element \ Order 1 2 3 4 5
Solenoid 1 0 a−2 0 a−4

Dipole - 1 a−1 a−2 a−3

Quadrupole - 0 1 0 a−2

There seems to be a general rule that lowest order end effects
are integrable, and higher orders are aperture-dependent as ∼
(x/aperture)n, where n=the appropriate power, and so diverge
in the hard-edge limit.
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Summary

• Lowest-order end effects do not depend upon aper-
ture: they can be transformed away for all ele-
ments checked so far. Rigorous proof anyone?

• These effects are often adequately approximated
by the extremely simple formulas obtained in the
hard-edge approximation.

• Next-to-lowest-order end effects do depend on aper-
ture and therefore diverge in the hard-edge limit.
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